

An Introduction to Quality by Design with Case Study

National Regulatory Conference 2015 (NRC 2015), Malaysia

Dr. Elisabeth Kirchisner, Roche

- ▼ What is Quality by Design (QbD) ?
- ▼ Implementation of QbD Case Study for a monoclonal antibody
- ▼ Summary

What is Quality by Design (QbD) ?

What is Quality by Design (QbD) ?

ICH Q8: A systematic approach to development that begins with predefined objectives and emphasizes product and process understanding and process control, based on sound science and quality risk management

- Leverages knowledge of structure-function relationship to define product attributes that are important
- Uses science-based and risk-based approaches to define the commercial manufacturing process and the management of the post-approval lifecycle
- Aims at developing deeper product & process understanding throughout the lifecycle of a product
 - Control system tailored to product requirements
 - Ø Process robustness enhanced
 - Ø Deviation and change assessments facilitated

QbD Approach – Beginning With the End in Mind

Target Product Profile

Quality Target Product Profile

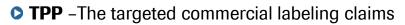
Quality Risk Management

Critical Quality

Attributes

Critical Process

Parameters &


Critical Material

Attributes

Design Space

Control Strategy

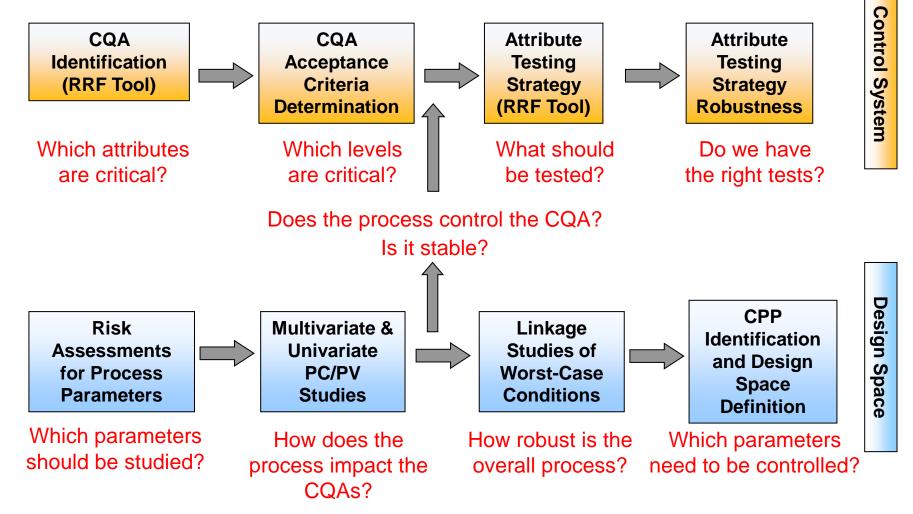
- **QTPP** A prospective summary of the quality characteristics of a Drug Product that ideally will be achieved to ensure the desired quality, taking into account safety and efficacy of the Drug Product.
- **QRM** A systematic process of organizing information to support decision making based on identification of hazards and evaluation of risks management associated with those hazards.
- (p)CQA A physical, chemical or microbiological property or characteristic that should be within an appropriate limit, range or distribution to ensure the desired product quality ((p) = potential). Considers the relevant Mechanisms of Action.
- (p)CPP, (p)CMA A process parameter or material whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality ((p) = potential).
- DSp The multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality.
- CS A planned set of controls, derived from current product and process understanding that ensures process performance and product quality.

Regulatory Considerations for Design Space

- Movement within the design space is not considered as a change (from a regulatory reporting point of view)
- Movement out of the design space is considered to be a change (requires regulatory reporting according to regional requirements)
- Control of all parameters including changes are managed in the Manufacturer's Quality System, regardless of whether they are reportable or require pre-approval

Roche's Design Space definition is currently the combination of all of the unit operations, their associated CPPs and non-CPPs described in the Module 3 Process Description

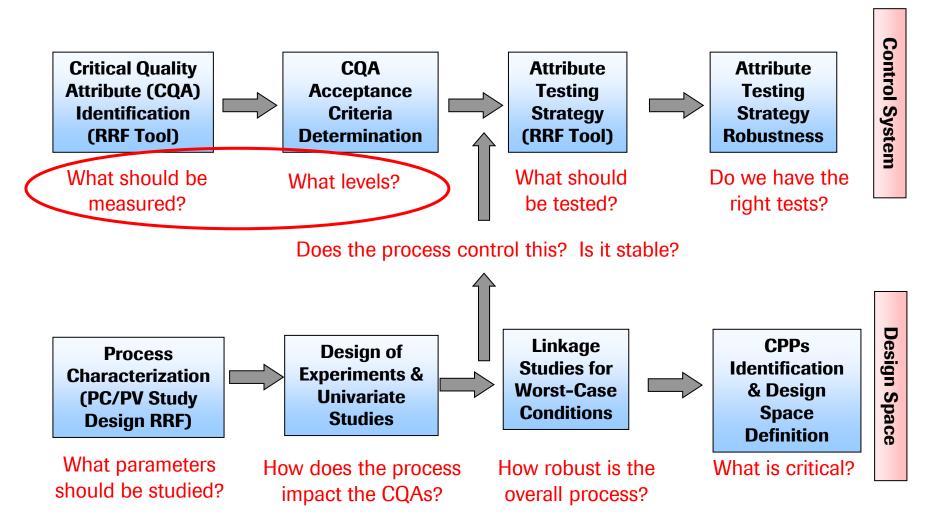
Implementation of QbD


Case Study: Monoclonal Antibody

General Introduction – Monoclonal Antibody

	Monoclonal Antibody
Molecule	Recombinant, humanized, monoclonal antibody (lgG1)
Indications	Oncology
Route of administration	Intravenous (IV) infusion
Dosage form	Concentrate for solution for infusion Single 1,000 mg dose in a 50 mL glass vial containing 40 mL of liquid concentrate
Composition	25 mg/mL of antibody in 20 mM L-histidine/L-histidine hydrochloride, 240 mM trehalose, 0.02% poloxamer 188, pH 6.0
Storage conditions	2°C - 8°C, protected from light; shelf life 36 months

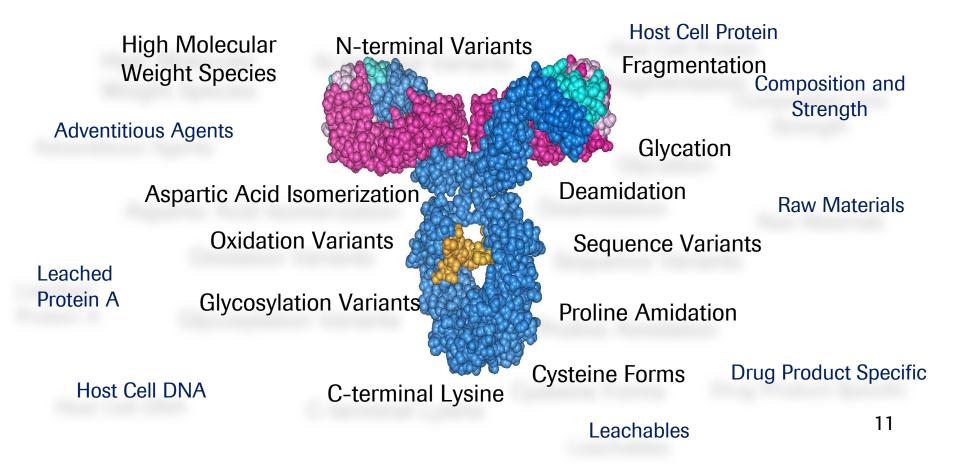
Quality by Design Tools and their Purpose *Systematic approach to Control System and Design Space*



QbD provides a systematic approach to answer these questions

Roche

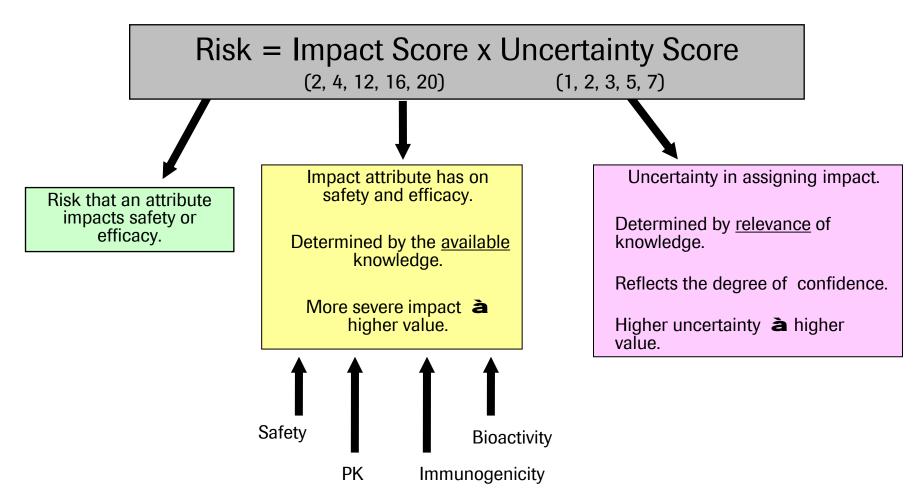
The Roche QbD Workflow



What are Potential Critical Quality Attributes for a Monoclonal Antibody?

ICH Q8 R1: Critical Quality Attributes - Link Directly to Patient Safety & Efficacy

A physical, chemical, biological or microbiological property or characteristic that should be within an **appropriate** limit, range, or distribution **to ensure the desired product quality**.



Critical Quality Attributes (CQAs) *Categorization*

Category of Attribute	Assessment	Rationale for Approach					
Product Variants	Risk Ranking and Filtering	Impact to patient safety and product efficacy is specific to variant in question, mechanisms of action, route of administration, etc.					
Process-related impurities	Risk Ranking and Filtering	Clinical data from similar products can be used to assess safety					
Composition and Strength	Obligate CQA	Potentially high impact to safety and efficacy					
Adventitious Agents	Obligate CQA	Potentially high impact to safety					
Raw Materials	Compare Estimated Daily Intake and Acceptable Daily Exposure	Extensive data available from safety and toxicity studies					

Critical Quality Attributes (CQAs) *Identification: Risk Ranking & Filtering Tool*

Impact and Uncertainty rankings have different scales to reflect the relative importance

KOCN

Example – CQAs for Monoclonal Antibody

Product Variant CQAs

High-molecular-weight species Low-molecular-weight species

Deamidation Unknown acidic charge variants Glycation

Aspartic acid isomerization

Oxidation

Afucosylation Hybrid glycans Mannose5 Sialylation (NANA) Non-glycosylated Heavy Chain (NGHC)

Sequence variants Protein structure Cysteine forms

Product Variant Non-CQAs

C-terminal lysine N-terminal pyroglutamic acid C-terminal proline amidation Galactosylation

Process-Related Impurity CQAs

Host cell proteins (HCP) Host cell DNA Leached protein A Some raw materials

Obligatory CQAs

Composition and Strength

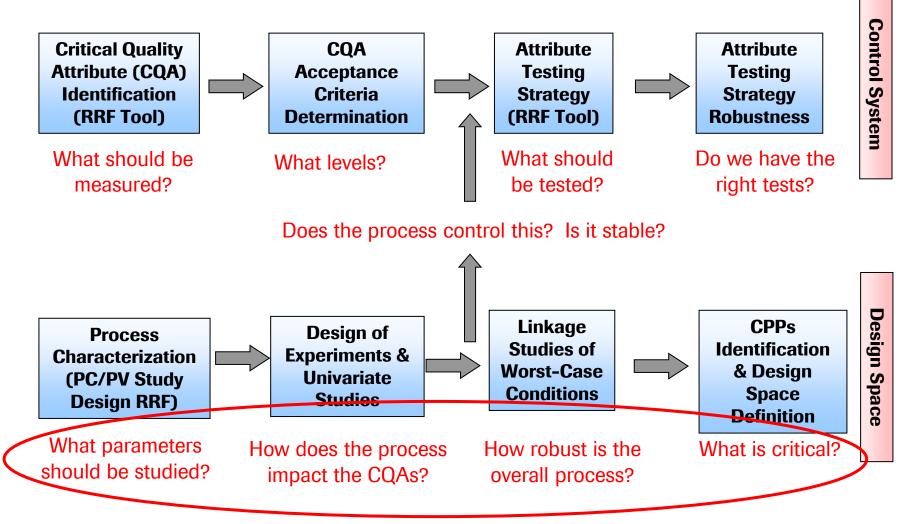
Protein Content, Osmolality, pH Appearance (color, opalescence, clarity) Content of: L-histidine, trehalose and poloxamer 188

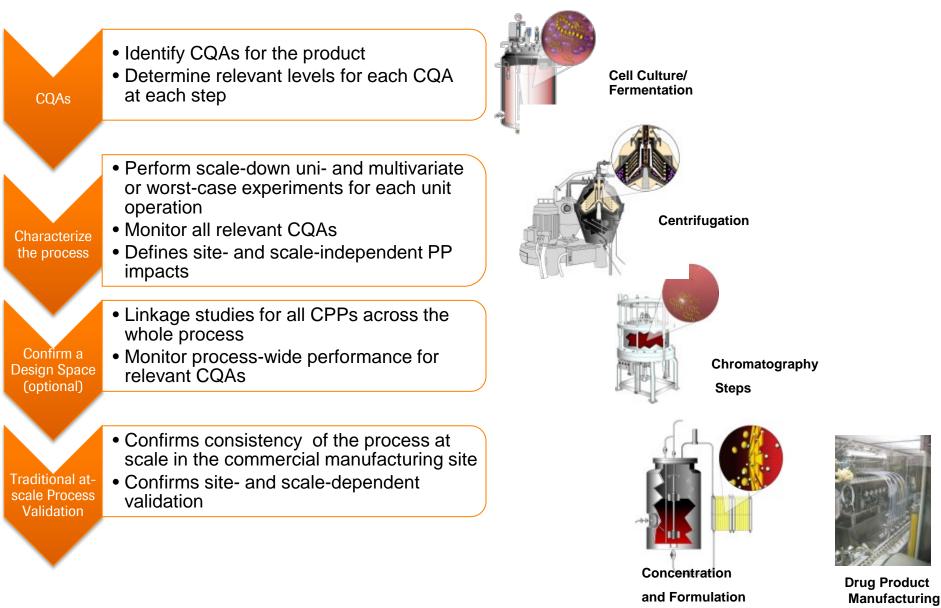
Drug Product Specific

Subvisible Particles Visible Particles Extractable Volume Sterility

Most of the quality attributes are critical quality attributes or obligatory critical quality attributes

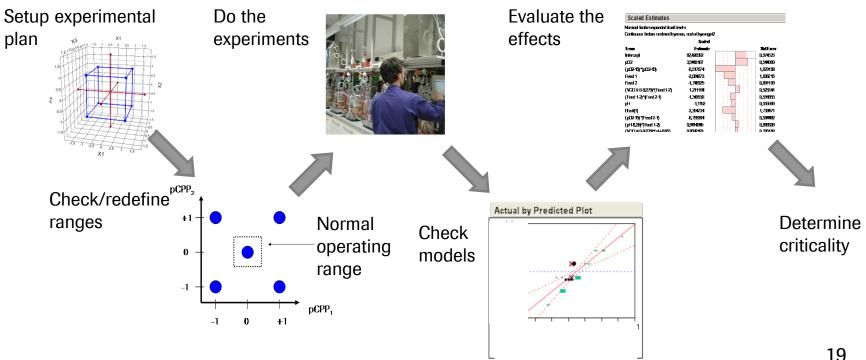
14


CQA Acceptance Criteria (CQA-AC)


- The CQA-AC represents a numerical limit a CQA must meet end of shelf life in order to ensure the desired quality of the product.
 - Based on patient impact, not on product-specific (clinical) manufacturing
 - Collective effect of QAs considered to ensure PK and biological activity
 - Drive CPP identification, definition of the Control Strategy and process Design Space
- CQA-AC are established based on:
 - Product-specific non-clinical and clinical experience
 - Platform knowledge and published literature
 - Process capability and testing strategy considerations
 - For CQAs that are not formed, no CQA-ACs are set
- May extend beyond product-specific clinical and non-clinical historical ranges with justification
- Not necessarily specification acceptance criteria

The Roche QbD Workflow

Knowledge of pCQAs is used to Design & Characterize Roche Each Unit Operation – identifying CPPs & CMAs


Process Characterization & Validation (Example for DS)

All traditional process validation is performed for along with new approaches that enhance the assurance of product quality

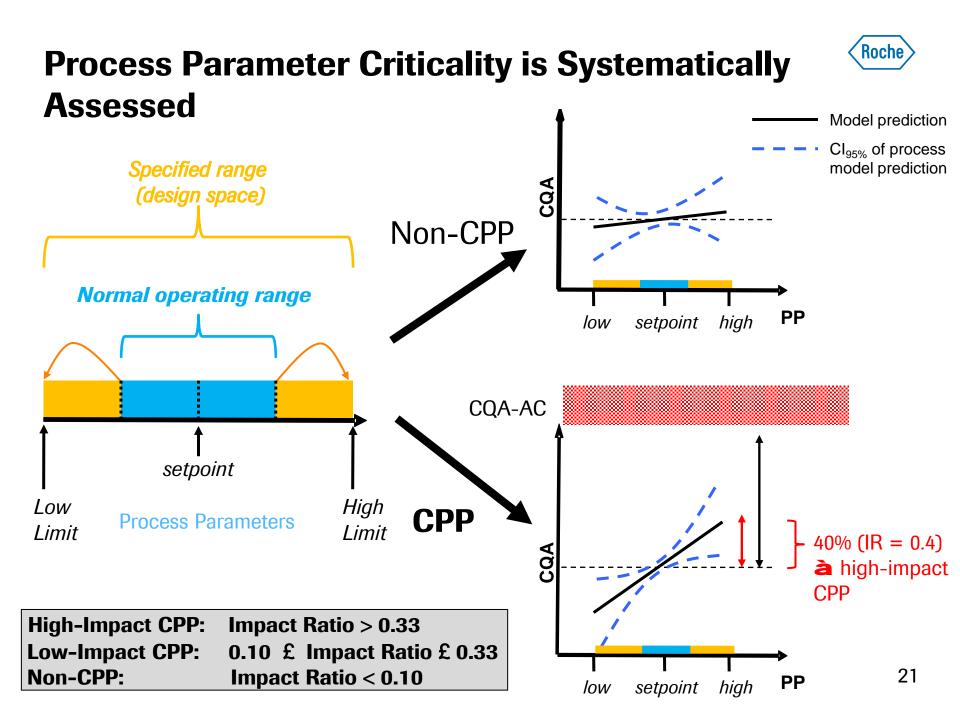
Validation Information	Traditional Information	Enhanced Approach						
At-Scale Process Qualification Runs	 3 consecutive runs at manufacturing scale in the commercial facility KPIs and process-related impurity clearance All lots meet specifications 							
Scale-Down Process Parameter Studies	 Characterization of proven acceptable ranges for manufacturing parameters Generally univariate studies. Not all CQAs studied, but specified attributes assured Description of scale-down models 	 Greater transparency of experimental design & data analysis Impact of parameter ranges on all relevant CQAs studied in multivariate studies Performance of "Linkage Studies" ensures product quality within the claimed ranges Statistical evaluation of scale-down models 						
Scale-Down Process Performance Studies	 Process-related impurity clearance Virus removal and refiltration Pool hold times Resin lifetime Limit of in vitro cell age Membrane carry-over Filter leachables and extractable 							

The Approach to a Process Model

- Use qualified small scale models
- Perform multivariate studies whenever possible
- Perform multiple rounds of experiments if required (e.g. screening and response surface)

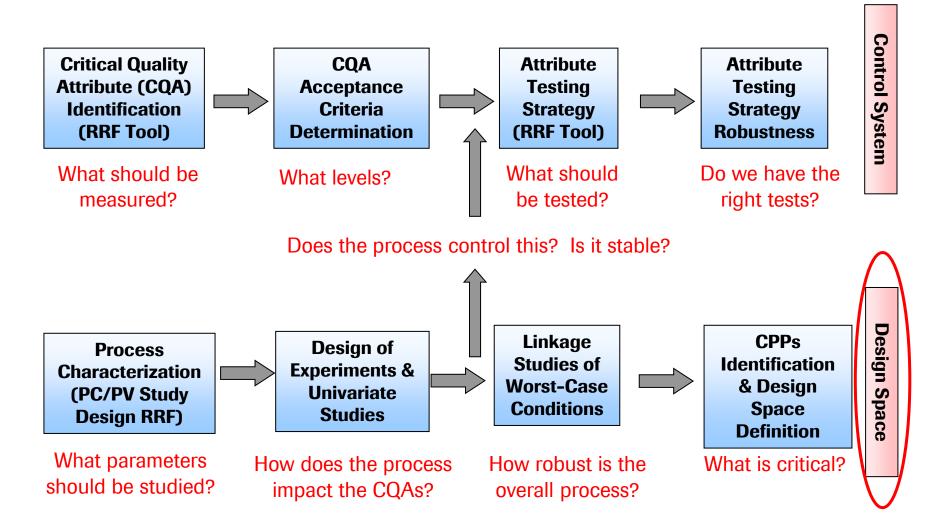
Koch

Identification of CPPs *Definition*



ICH Definition: "A process parameter **whose variability has an impact on a critical quality attribute** and therefore should be monitored or controlled to ensure the process produces the desired quality"

CPPs are all PPs that have a **meaningful impact** on CQAs (i.e. lead to a >10% CQA change relative to the allowed range).

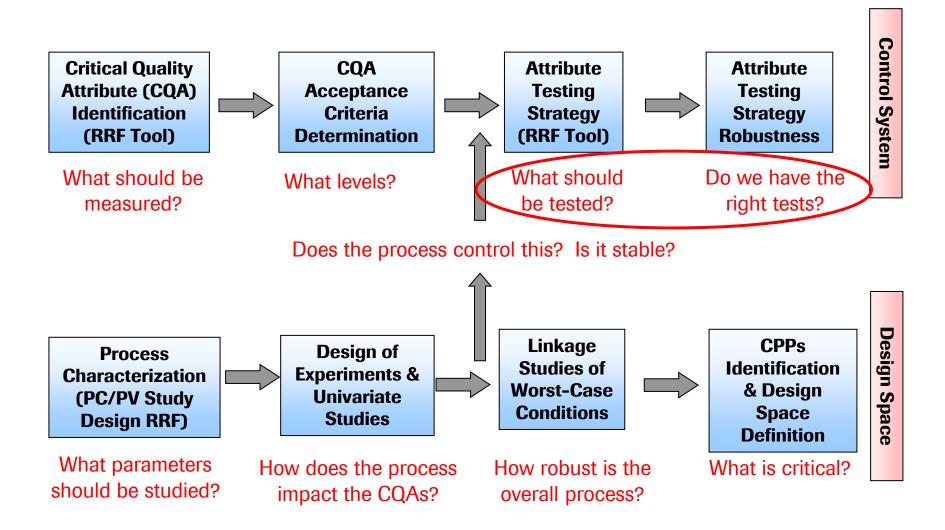

All CPPs are controlled and maintained within ranges to guarantee CQAs remain within their acceptance criteria.

- CQA remains within its acceptance criteria when CPP is at the limit of its range
- CQA remains within its acceptance criteria considering CPP interaction at the limits of their ranges (interaction)
- Impact on CQA (e.g. impurity level) on a given unit operation can be managed adequately by the following unit operations (e.g. impurity removal downstream) (linkage)

The Roche QbD Workflow

Roche's Design Space Definition

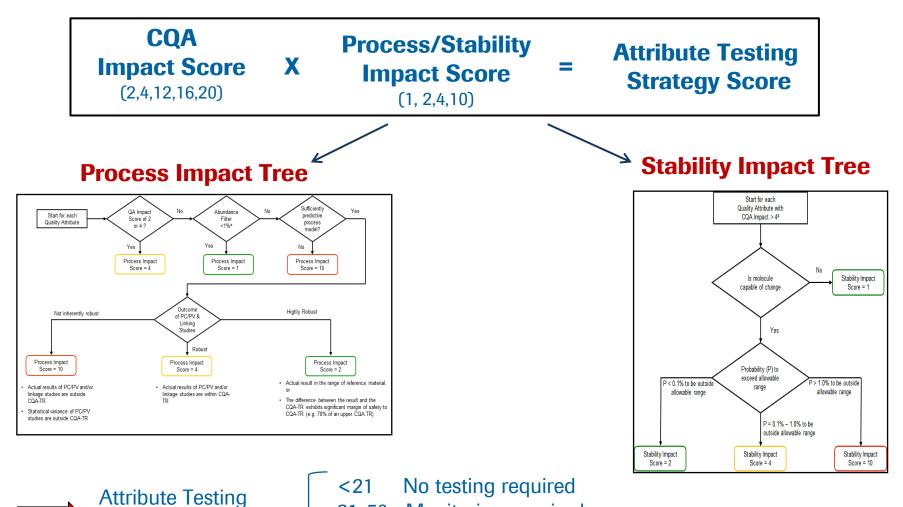
The Drug Substance and Drug Product design space includes


- All unit operations and their sequence
- All process parameters describing the operation of each of the unit operations (described in Section S.2.2 and P.3.3)
- All raw materials

The design space is limited by the multivariate acceptable ranges for all relevant process parameters

- CPPs
- Non-CPPs

The Roche QbD Workflow


Attribute Testing Strategy (ATS) – A Major Component of the Overall Control Strategy

Attribute Testing Strategy Score Defines Testing Strategy

Strategy (ATS) Score

21-50 Monitoring required

>50

Control System testing required

Roche

ATS Robustness Assessment

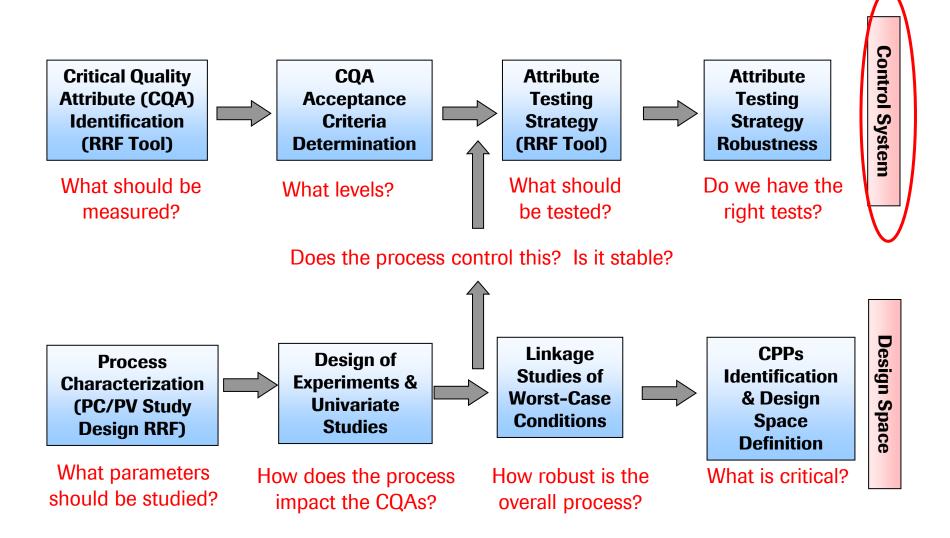
- Performed by Subject Matter Experts for every Quality Attribute (QA)
- It takes the following aspects under consideration:
- **Criticality/Risk** The criticality is assessed as the impact of the QAs on safety, immunogenicity, and efficacy.
- Likelihood of formation
 Likelihood of formation of the variant during the manufacturing process and/or storage.
- **Capability of the Process** Ability of the process to control the attribute.
- Capability of the analytical procedure
- Additional Control
 Coverage of attribute by other analytical procedures in the ATS
- Conclusion Considering regulatory requirements

Assessment guides if any adaptions to the proposed testing strategy may be needed and can lead to elevating or downgrading attributes in the testing strategy categories or to redefining limits and methods. Attributes with ATS scores > 50 are not removed from the control system testing by this assessment.

Example: Attribute Testing Strategy

	CQA	CQA		Drug Substance				Drug Product								
lory		Impact Score	Score	Score	Cor Sys Tes			ing Stability in Exercises ing		Score	Score	Control System Testing			Stability in Exercises	
CQA Category			Process Impact	Stability Impact	Batch Release ^a	Stability	Monitoring	Considered for Sta Comparability Exe	No Testing	Process Impact	Stability Impact	Batch Release	Stability	Monitoring	Considered for Sta Comparability Exe	No Testing
Size- Related Variants	HMWS	20	4	10	80	200	_			4	2	80	40			_
Si Rel Var	LMWS	16	4	2	64			32		2	2			32	32	_
	Deamidation in CDR	16	1	1	—			—	16	1	1	_			_	16
lated s: ants	Deamidation in non-CDR	16	1	1			_		16	1	1					16
Charge-Related Variants: Acidic Variants	Unknown Acidic Charge ∀ariants	12	10	2	120			24		2	10		(12)	24		_
Char V Acid	Glycation in CDR	16	2	1	—	_	32			1	1					16
	Glycation in non-CDR	16	2	1			32			1	1					16

Attribute Testing Strategy (ATS) Score <21 No testing required


21-50 Monitoring required

>50 Control System testing required

28

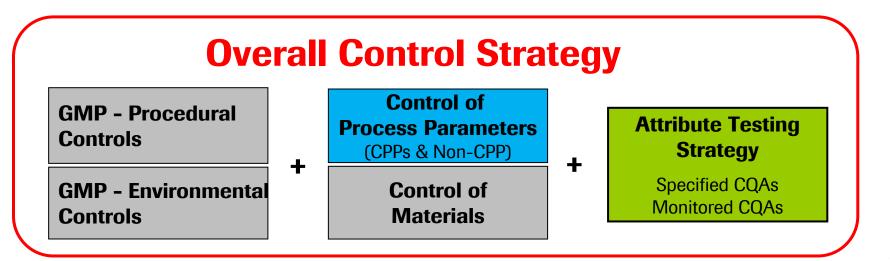
The Roche QbD Workflow

Control System for Drug Substance

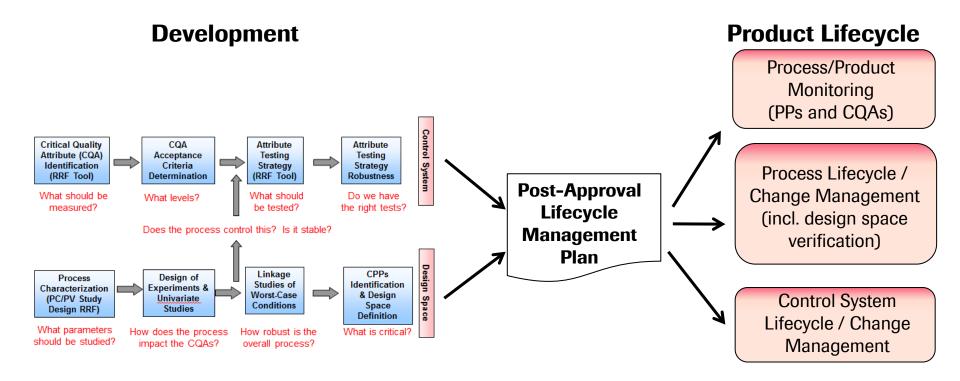
Testing of						
Color	Potency by Bioassay					
Clarity/Opalescence	Identity					
рН	Purity (e.g. by SE-HPLC, CE-SDS, IE-HPLC)					
Osmolality	Glycosylation (e.g., Afucosylation)					
Content of Excipients	Bioburden					
Content of Protein	Bacterial Endotoxins					

- Obligatory testing is implemented
- Testing is based on the residual risk of attributes to stay within acceptance criteria:
 - In case of residual risk: attribute is tested and specified
 - Testing may differ between release and stability

Control System for Drug Product


Testing of						
Physical State	Identity					
Color	Purity (e.g. by SE-HPLC)					
Clarity/Opalescence	Potency by Bioassay					
Extractable Volume	Content of Protein					
Particles (visible, subvisible)	Sterility					
рН	Bacterial Endotoxins					
Osmolality						

Overall Commercial Control Strategy


The overall commercial control strategy covers different aspects:

- allowed ranges for CQAs and process parameters
- control of materials
- GMP controls

Product Lifecycle Post-Approval Lifecycle Management Plan

The PALM Plan describes how process parameters and CQAs are monitored during product lifecycle.

The PALM Plan describes how changes are managed in the Quality Management System.

Approval Status for Monoclonal Antibody

The marketing application for the monoclonal antibody of this case study has currently been approved by approx. 60 countries

Approved in EU, USA, Switzerland, Canada, Australia, New Zealand, Brazil, Russia, South Korea, Taiwan, many others

Design Space and PALM plan have been approved in all countries

Summary

Bottom Line: What has changed?

- Enhanced knowledge results in more robust routine process
- Effects of process parameters on quality attributes well understood
 - Deviations and changes can be assessed more precisely
 - When moving into «unknown territory» model predictions have to be verified
- Definition of a Design Space in which we can move freely without HA approval/report
- Control system systematically covers all known risks and can be adapted during lifecycle (e.g. frequency of testing monitoring attributes)
- Process monitoring systematically adds to process understanding
- No fundamental changes in manufacturing rules or Quality System (new only: «monitoring attributes» according to PALM Plan)

Benefits of QbD

- QbD can be a highly effective global driver of change in the industry providing:
 - Enhanced level of product quality and process robustness
 - The foundation for continued improvement

- The work done to enable Design Space claims has clearly enhanced overall process robustness and product quality
 - More extensive evaluation of process impacts on CQAs
 - Driven DoE approaches to become "state of the art"
 - More systematic and inclusive identification of CPPs and non-CPPs
 - More rigor in developing the overall control strategies
 - More assurance that process is robust upon approval
 - More assurance of supply
 - Facilitates change and deviation management

Acknowledgments

Thanks to:

Roche/Genentech Global QbD Large Molecule Team Multiple Technical Development Teams Global Health Authorities

Doing now what patients need next